[spb_row element_name=”Row” wrap_type=”standard-width” row_bg_type=”color” color_row_height=”content-height” bg_type=”cover” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”standard” bg_video_loop=”yes” parallax_video_height=”window-height” row_top_style=”none” row_bottom_style=”none” parallax_video_overlay=”none” row_overlay_opacity=”0″ remove_element_spacing=”no” row_col_spacing=”0″ row_col_pos=”default” row_col_equal_heights=”no” row_expanding=”no” row_animation=”none” row_animation_delay=”0″ minimize_row=”yes” simplified_controls=”yes” custom_css_percentage=”no” custom_css=”margin-top: 0px;margin-bottom: 0px;” border_styling_global=”default” width=”1/1″ el_position=”first last”] [spb_text_block animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
Following are Excerpts from the Peer-Reviewed Research Article
[/spb_text_block] [/spb_row] [spb_row element_name=”Row” wrap_type=”content-width” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”0.5″ bg_video_loop=”yes” parallax_video_height=”window-height” parallax_video_overlay=”none” row_overlay_opacity=”0″ row_col_pos=”default” minimize_row=”yes” width=”1/1″ el_position=”first last”] [spb_text_block title=”SUMMARY” animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
Worldwide, the use of hormonal contraceptives is on the rise as a primary intervention for improving women’s health outcomes through reduced maternal mortality and increased childhood survival. There are many hormone contraceptive formulations, all of which contain some form of progesterone.
Although the effects of hormone contraceptives and progesterone, specifically, have been evaluated in the context of infections of the reproductive tract, the effects of progesterone at other mucosal sites, including the respiratory tract have not been systematically evaluated.
We have made the novel observation that administration of progesterone to female mice depleted of progesterone confers protection against both lethal and sublethal influenza A virus infection. In particular, progesterone reduces pulmonary inflammation, improves lung function, repairs the damaged lung epithelium, and promotes faster recovery following influenza A virus infection.
Progesterone causes protection against severe outcome from influenza by inducing production of the epidermal growth factor, amphiregulin, by respiratory epithelial cells.
This study provides insight into a novel mechanistic role of progesterone in the lungs and illustrates that sex hormone exposure, including through the use of hormonal contraceptives, has significant health effects beyond the reproductive tract.
[/spb_text_block] [/spb_row] [spb_row element_name=”Row” wrap_type=”content-width” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”0.5″ bg_video_loop=”yes” parallax_video_height=”window-height” parallax_video_overlay=”none” row_overlay_opacity=”0″ row_col_pos=”default” minimize_row=”yes” width=”1/1″ el_position=”first last”] [spb_text_block title=”Progesterone’s Activity on Immune Cells & Non-Immune Cells” animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
Natural Progesterone (P4) produced by the ovaries during reproductive cycles, or synthetic Progesterone analogues found in contraceptives (progestins), signal primarily through progesterone receptors present on many cells in the body, including immune cells (e.g., NK cells, macrophages, dendritic cells (DCs), and T cells) as well as non-immune cells, such as epithelial cells, endothelial cells, and neuronal cells.
Studies show that Progesterone can alter the immune environment and promote homeostasis by decreasing inflammation and inducing anti-inflammatory responses.
For example, in the presence of Progesterone, macrophages and dendritic cells have a lower state of activation, produce higher levels of anti-inflammatory cytokines, such as IL-10, and produce lower amounts of pro-inflammatory cytokines, such as IL-1β and TNF-α…
[/spb_text_block] [/spb_row] [spb_row element_name=”Row” wrap_type=”content-width” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”0.5″ bg_video_loop=”yes” parallax_video_height=”window-height” parallax_video_overlay=”none” row_overlay_opacity=”0″ row_col_pos=”default” minimize_row=”yes” width=”1/1″ el_position=”first last”] [spb_text_block title=”HIGHLIGHTS” animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
*Progesterone limits lung pathology and protects female mice against lethal Influenza A Virus infection
*Progesterone promotes a repair environment in the lungs during lethal Influenza A Virus infection
*Progesterone accelerates long-term pulmonary recovery during sub-lethal Influenza A Virus infection
*Progesterone accelerates wound healing and increases production of AREG by respiratory epithelial cells
Review the Peer-Reviewed Article Here
[/spb_text_block] [/spb_row] [spb_row element_name=”Row” wrap_type=”content-width” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”0.5″ bg_video_loop=”yes” parallax_video_height=”window-height” parallax_video_overlay=”none” row_overlay_opacity=”0″ row_col_pos=”default” minimize_row=”yes” width=”1/1″ el_position=”first last”] [spb_text_block animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
References for this Research Article
[/spb_text_block] [/spb_row] [spb_row element_name=”Row” wrap_type=”content-width” parallax_image_height=”content-height” parallax_image_movement=”fixed” parallax_image_speed=”0.5″ bg_video_loop=”yes” parallax_video_height=”window-height” parallax_video_overlay=”none” row_overlay_opacity=”0″ row_col_pos=”default” minimize_row=”yes” width=”1/1″ el_position=”first last”] [spb_text_block animation=”none” animation_delay=”0″ simplified_controls=”yes” custom_css_percentage=”no” padding_vertical=”0″ padding_horizontal=”0″ margin_vertical=”0″ custom_css=”margin-top: 0px;margin-bottom: 0px;” border_size=”0″ border_styling_global=”default” width=”1/1″ el_position=”first last”]
1. Model List of Essential Medicines [Internet]. 2015 [cited April 2015]. Available from: http://www.who.int/selection_medicines/committees/expert/20/EML_2015_FINAL_amended_AUG2015.pdf?ua=1.
2. United Nations DoEaSA Population Division. Trends in Contraceptive Use Worldwide 2015. United Nations, 2015 Contract No.: ST/ESA/SER.A/349.
3. Petitti DB. Clinical practice. Combination estrogen-progestin oral contraceptives. N Engl J Med. 2003;349(15):1443–50.
View Article Google Scholar
4. Teilmann SC, Clement CA, Thorup J, Byskov AG, Christensen ST. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J Endocrinol. 2006;191(3):525–35. Epub 2006/12/16. pmid:17170211. View Article PubMed/NCBI Google Scholar
5. Jain R, Ray JM, Pan JH, Brody SL. Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Biol. 2012;46(4):446–53. Epub 2011/10/29. pmid:22033264; PubMed Central PMCID: PMC3359952. View Article PubMed/NCBI Google Scholar
6. Butts CL, Shukair SA, Duncan KM, Bowers E, Horn C, Belyavskaya E, et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int Immunol. 2007;19(3):287–96. pmid:17289656. View Article PubMed/NCBI Google Scholar
7. Jones LA, Kreem S, Shweash M, Paul A, Alexander J, Roberts CW. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J Immunol. 2010;185(8):4525–34. Epub 2010/09/17. pmid:20844199.View Article PubMed/NCBI Google Scholar
8. Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, et al. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology. 2010;151(11):5477–88. Epub 2010/09/17. pmid:20844003. View Article PubMed/NCBI Google Scholar
9. Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol. 2011;187(4):1778–87. Epub 2011/07/20. pmid:21768398; PubMed Central PMCID: PMC3155957.View Article PubMed/NCBI Google Scholar
10. Kaushic C, Roth KL, Anipindi V, Xiu F. Increased prevalence of sexually transmitted viral infections in women: the role of female sex hormones in regulating susceptibility and immune responses. J Reprod Immunol. 2011;88(2):204–9. pmid:21296427. View Article PubMed/NCBI Google Scholar
11. Ngcapu S, Masson L, Sibeko S, Werner L, McKinnon LR, Mlisana K, et al. Lower concentrations of chemotactic cytokines and soluble innate factors in the lower female genital tract associated with the use of injectable hormonal contraceptive. J Reprod Immunol. 2015;110:14–21. pmid:25956139. View Article PubMed/NCBI Google Scholar
12. Quispe Calla NE, Vicetti Miguel RD, Boyaka PN, Hall-Stoodley L, Kaur B, Trout W, et al. Medroxyprogesterone acetate and levonorgestrel increase genital mucosal permeability and enhance susceptibility to genital herpes simplex virus type 2 infection. Mucosal Immunol. 2016. pmid:27007679. View Article PubMed/NCBI Google Scholar
13. Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12(4):295–305. Epub 2012/03/10. nri3166 [pii] pmid:22402670; PubMed Central PMCID: PMC3364025. View Article PubMed/NCBI Google Scholar
14. McGill J, Van Rooijen N, Legge KL. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J Exp Med. 2008;205(7):1635–46. pmid:18591411. View Article PubMed/NCBI Google Scholar
15. McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, et al. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest. 2012;122(8):2847–56. pmid:22820287; PubMed Central PMCID: PMC3408751. View Article PubMed/NCBI Google Scholar
16. Damjanovic D, Small CL, Jeyanathan M, McCormick S, Xing Z. Immunopathology in influenza virus infection: uncoupling the friend from foe. Clin Immunol. 2012;144(1):57–69. Epub 2012/06/08. pmid:22673491.
17. Gorski SA, Hufford MM, Braciale TJ. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract. Curr Opin Virol. 2012;2(3):233–41. pmid:22608464; PubMed Central PMCID: PMC3378727.
18. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54. PubMed Central PMCID: PMC3320042.
19. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, et al. A Distinct Function of Regulatory T Cells in Tissue Protection. Cell. 2015;162(5):1078–89. pmid:26317471.
20. Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci U S A. 2015;112(34):10762–7. pmid:26243875; PubMed Central PMCID: PMC4553775.
21. Zaiss DM, Yang L, Shah PR, Kobie JJ, Urban JF, Mosmann TR. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science. 2006;314(5806):1746. pmid:17170297.
22. Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ. Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast cancer research: BCR. 2013;15(3):R44. pmid:23705924; PubMed Central PMCID: PMC3738150.
23. Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol. 1995;9(6):691–705. pmid:8592515.
24. Zaiss DM, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity. 2015;42(2):216–26. pmid:25692699.
25. Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17beta-estradiol protects females from influenza a virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(7):e1002149. Epub 2011/08/11. [pii]. pmid:21829352; PubMed Central PMCID: PMC3145801.
26. Larcombe AN, Foong RE, Bozanich EM, Berry LJ, Garratt LW, Gualano RC, et al. Sexual dimorphism in lung function responses to acute influenza A infection. Influenza Other Respir Viruses. 2011;5(5):334–42. Epub 2011/06/15. pmid:21668688.
27. Klein SL, Hodgson A, Robinson DP. Mechanisms of sex disparities in influenza pathogenesis. J Leukoc Biol. 2012;92(1):67–73. Epub 2011/12/02. pmid:22131346.
28. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80. pmid:11526384.
29. Giatti S, Caruso D, Boraso M, Abbiati F, Ballarini E, Calabrese D, et al. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol. 2012;24(6):851–61. Epub 2012/01/31. pmid:22283602.
30. Hughes GC, Choubey D. Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat Rev Rheumatol. 2014;10(12):740–51. pmid:25155581.
31. Voskuhl RR, Wang H, Wu TC, Sicotte NL, Nakamura K, Kurth F, et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(1):35–46. pmid:26621682.
32. Finch CE, Holinka CF. Aging and uterine growth during implantation in C57BL/6J mice. Exp Gerontol. 1982;17(3):235–41. pmid:7140864.
33. Flurkey K, Gee DM, Sinha YN, Wisner JR Jr., Finch CE. Age effects on luteinizing hormone, progesterone and prolactin in proestrous and acyclic C57BL/6j mice. Biol Reprod. 1982;26(5):835–46. pmid:7201329.
34. Raberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318(5851):812–4. Epub 2007/11/03. pmid:17975068.
35. Topham DJ, Tripp RA, Doherty PC. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997;159(11):5197–200. pmid:9548456.
36. Lawrence CW, Braciale TJ. Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J Immunol. 2004;173(2):1209–18. pmid:15240712.
37. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–7. Epub 2006/09/12. nm1477 [pii] pmid:16964257.
38. Maloy KJ, Kullberg MC. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol. 2008;1(5):339–49. pmid:19079198.
39. Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013;8:477–512. pmid:23157335; PubMed Central PMCID: PMC3965671.
40. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73. pmid:22406269.
41. Longhi MS, Moss A, Bai A, Wu Y, Huang H, Cheifetz A, et al. Characterization of human CD39+ Th17 cells with suppressor activity and modulation in inflammatory bowel disease. PLoS One. 2014;9(2):e87956. pmid:24505337; PubMed Central PMCID: PMC3914873.
42. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126(12):2739–50. pmid:10331984.
43. Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI, Fattman CL, et al. IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol. 2013;182(4):1286–96. pmid:23490254; PubMed Central PMCID: PMC3620404.
44. Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(2):R61. pmid:18447940; PubMed Central PMCID: PMC2447617.
45. Cutini PH, Campelo AE, Massheimer VL. Differential regulation of endothelium behavior by progesterone and medroxyprogesterone acetate. J Endocrinol. 2014;220(3):179–93. pmid:24301615.
46. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Frontiers in neuroscience. 2012;6:10. Epub 2012/02/22. pmid:22347156; PubMed Central PMCID: PMC3274763.
47. Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol. 2009;124(5):913–20 e1–7. pmid:19895983.
48. Fukumoto J, Harada C, Kawaguchi T, Suetsugu S, Maeyama T, Inoshima I, et al. Amphiregulin attenuates bleomycin-induced pneumopathy in mice. Am J Physiol Lung Cell Mol Physiol. 2010;298(2):L131–8. pmid:19915156.
49. Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol. 2014;28:31–41. pmid:24463227.
50. Kelly FL, Sun J, Fischer BM, Voynow JA, Kummarapurugu AB, Zhang HL, et al. Diacetyl induces amphiregulin shedding in pulmonary epithelial cells and in experimental bronchiolitis obliterans. Am J Respir Cell Mol Biol. 2014;51(4):568–74. pmid:24816162; PubMed Central PMCID: PMC4189481.
51. Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Moura P, Mota-Pinto A. Membrane progesterone receptors in human regulatory T cells: a reality in pregnancy. BJOG. 2015;122(11):1544–50. pmid:25639501.
52. Moser EK, Hufford MM, Braciale TJ. Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner. PLoS Pathog. 2014;10(8):e1004315. pmid:25144228; PubMed Central PMCID: PMC4140856.
53. Kaore SN, Langade DK, Yadav VK, Sharma P, Thawani VR, Sharma R. Novel actions of progesterone: what we know today and what will be the scenario in the future? The Journal of pharmacy and pharmacology. 2012;64(8):1040–62. Epub 2012/07/11. pmid:22775208.
54. Ye J, Sorrell EM, Cai Y, Shao H, Xu K, Pena L, et al. Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype? PLoS Pathog. 2010;6(10):e1001145. pmid:20976194; PubMed Central PMCID: PMC2954835.
55. Buchweitz JP, Harkema JR, Kaminski NE. Time-dependent airway epithelial and inflammatory cell responses induced by influenza virus A/PR/8/34 in C57BL/6 mice. Toxicol Pathol. 2007;35(3):424–35. Epub 2007/05/10. 778353367 [pii] pmid:17487773.
56. Tate MD, Pickett DL, van Rooijen N, Brooks AG, Reading PC. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol. 2010;84(15):7569–80. Epub 2010/05/28. JVI.00291-10 [pii] pmid:20504924; PubMed Central PMCID: PMC2897615.
57. Limjunyawong N, Fallica J, Ramakrishnan A, Datta K, Gabrielson M, Horton M, et al. Phenotyping mouse pulmonary function in vivo with the lung diffusing capacity. J Vis Exp. 2015;(95):e52216. pmid:25590416.
58. Shang Y, Das S, Rabold R, Sham JS, Mitzner W, Tang WY. Epigenetic alterations by DNA methylation in house dust mite-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2013;49(2):279–87. pmid:23526225; PubMed Central PMCID: PMC3824034.
59. You Y, Richer EJ, Huang T, Brody SL. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol. 2002;283(6):L1315–21. Epub 2002/10/22.
60. Rowe RK, Brody SL, Pekosz A. Differentiated cultures of primary hamster tracheal airway epithelial cells. In Vitro Cell Dev Biol Anim. 2004;40(10):303–11. Epub 2005/03/23. 0408056 [pii] pmid:15780007; PubMed Central PMCID: PMC1592688.
[/spb_text_block] [/spb_row]